
Int. J. of Intelligent Computing and Applied Sciences
1

 Copyright©2013 DRIEMS ISSN (Print) : 2322-0031 , Vol. 4, Issue 2, 2016

EFFECTIVE FAULT TOLERANCE MANAGEMENT IN CLOUD

COMPUTING

Dr. Chandralekha

*Corresponding author: chandralekha.sonu@gmail.com

Abstract: Cloud computing is an adoptable technology as it provides integration of software and hardware

resources which are dynamically scalable. The dynamic environment of cloud results in various unexpected

faults and failures. Fault tolerance enables a system to react gracefully to an unexpected equipment or

programming malfunction. This paper explores the significance relationship between fault tolerance and system

performance and develops metrics to measure fault tolerance within the context of system performance. We

show the utility of designed metrics such as robustness by applying them to a sample mobile cloud computing

environment consisting of multiple numbers of mobile nodes. Further robustness has been optimized using

genetic algorithm and effective fault tolerance exhibited by the system has been evaluated.

Keywords: Cloud computing, reactive/proactive fault tolerance, robustness, performance parameters, checks

point.

1. Introduction

The increasing demand for flexibility and scalability in dynamically obtaining and releasing computing

resources in a cost-effective and device-dependent manner and in hosting applications without the burden of

installation and maintenance has resulted in a wide adoption of the cloud computing paradigm. The increasing

popularity of this paradigm as an attractive alternative to classic information processing systems has increased

the importance of its correct and continuous operation even in the presence of faulty components. Among the

many addressable issues [22] of cloud computing such as fault tolerance, workflow scheduling, workflow

management, security etc, fault tolerance is one of the important issues which the researchers are supposed to

look forward. Cloud computing is still vulnerable to a large number of system failures and in effect and there is

an increasing concern among users regarding the reliability and availability of cloud computing services. In order

to minimize the failure impact on system and application execution, failures should be anticipated and

proactively handled. Fault tolerance techniques are used to predict these failures and take an appropriate action

before failures actually occur. Fault tolerance is concerned with all the techniques necessary to enable a system

to tolerate different software faults remaining in the system after its development. It is carried out by error

processing which have two constituent phases.

The phases are “effective error processing” which aimed at bringing the effective error back to a latent state, if

possible before occurrence of a failure and “latent error processing” aimed at ensuring that the error does not

become effective again. When a fault occurs, these techniques provide mechanisms to the system to prevent

system failure occurrence .The main benefits of implementing fault tolerance in cloud computing include failure

recovery, lower cost, improved performance metrics [1] etc. This paper aims to provide a better understanding of

fault tolerance challenges and identifies various tools and techniques used for fault tolerance. When multiple

instances of an application are running on several virtual machines (VM) and one of the server goes down, there

is a need to implement an autonomic fault tolerance technique that can handle these types of faults.

Fault tolerance management in cloud platform can be analyzed in two different visions. The first one consists

of giving both the detection and repair responsibilities to one cloud participant (exclusively) while the second is

to harness the skills of the two types of participant. According to these two visions, different fault tolerance

techniques have been presented [2] for the three types of failure namely hardware, VM and application.

Int. J. of Intelligent Computing and Applied Sciences
2

 Copyright©2013 DRIEMS ISSN (Print) : 2322-0031 , Vol. 4, Issue 2, 2016

2. Fault Tolerance Techniques

Fault tolerance can be classified either as proactive or reactive in cloud computing. The proactive fault

tolerance policy tries to[17] avoid recovery from fault, errors and failure by predicting them and proactively

replace the suspected component means to detect the problem before it actually come. Reactive fault tolerance

aims to remove the fault after it occurs and reduce the effort of failures when the failure effectively occurs. These

can be further classified into two sub-techniques error processing and fault treatment. Error processing aims at

removing errors from the computational state. Fault treatment aims at preventing faults from being re-activated.

2.1. Reactive Fault Tolerance Techniques

Reactive fault tolerance means to remove the fault after it occurs. Basically reactive fault tolerance policies

reduce the effect of failures on application execution when the failure effectively occurs. These techniques are

based on the following policies:

1. Check pointing/ Restart: In this scenario after doing every change in system a check pointing is done. When a

task fails, rather than from the [21] beginning it is allowed to be restarted that job from the recently .It is an

efficient task level fault tolerance technique for long running applications.

Replication: Various task replicas are run on different resources, for the execution to succeed till the entire

replicated task is not crashed. It can be implemented using tools like HAProxy, Hadoop and Amazon Ec2 etc.

2. Job Migration: During failure of any task, it can be migrated to another machine. This technique can be

implemented by using HAProxy.

3. SGuard: It is less disruptive [20] to normal stream processing and makes more resources available. It is based

on rollback recovery and can be implemented in HADOOP, Amazon EC2.

4. Retry: It is the simplest task level technique that retries the failed task on the same cloud resource.

5. Task Resubmission: It is the most widely used fault tolerance technique in current scientific workflow

systems. Whenever a failed task is detected, it is resubmitted either to the same or to a different resource at

runtime.

6. User defined exception handling: In this user specifies the particular treatment of a task failure for workflows.

7. Rescue workflow: This technique allows the workflow to continue even if the task fails until it becomes

impossible to move forward without catering the failed task.

8. B. Proactive Fault Tolerance

9. The principle of proactive fault tolerance policies is to avoid recovery from faults, errors and failures by

predicting them and proactively replacing the suspected components from other working components. These

techniques are based on these policies:

10. Software Rejuvenation: It is a technique that designs the system for periodic reboots. It restarts the

system with clean state.

11. Proactive Fault Tolerance using self-healing: When multiple instances of an application are running on

multiple virtual machines, it automatically handles failure of application instances.

12. Proactive Fault Tolerance using Pre-emptive Migration: Pre-emptive Migration relies on a feedback-loop

control mechanism where application is constantly monitored and analyzed.

The fault tolerance techniques [12] can be measured by the parameters like, network load for delay and

throughput, optimum resource utilization, response time and overload, job allocation, load balancing, scalability

and security.QoS in cloud is often characterized by using fault detection latency, replica launch latency and

failure recovery latency, and other application-dependent metrics such as bandwidth, reliability, robustness, and

loss rate etc.

Int. J. of Intelligent Computing and Applied Sciences
3

 Copyright©2013 DRIEMS ISSN (Print) : 2322-0031 , Vol. 4, Issue 2, 2016

Fault Tolerance Models

A failure represents the condition in which the system deviates from fulfilling its intended functionality or the

expected behaviour. A failure happens due to an error that is, due to reaching an invalid system state. The

hypothesized cause for an error is a fault which represents a fundamental impairment in the system. The notion

of faults, errors and failures can be [4] represented using the following chain [S.2004, HH.1997]:

Fault → Error → Failure → Fault → Error → Failure

Several models that are [3] implemented based on previously defined fault tolerance techniques are as

follows:

3.1. AFTRC

It is an Adaptive Fault Tolerance model in Real time Cloud Computing. In this proposed model system tolerates

fault proactively and makes decisions on the basis of the reliability of the processing nodes.

3.2. LLFT

A propose model which contains a low latency fault tolerance (LLFT) middleware for providing fault

tolerance for distributed applications deployed within the cloud computing environment. This middleware

replicates application by the use of semi-active replication or semi-passive replication process to protect the

application against various types of faults.

3.3. FTM

It is a model to overcome the limitation of existing methodologies and achieve the reliability and flexibility.

An inventive is proposed perspective on creating and managing fault tolerance. By this particular methodology

user can specify and apply the desire level of fault tolerance. FTM architecture can primarily be viewed as an

assemblage of several web services components, each with a specific functionality.

3.4. FTWS

It is a Fault [19] Tolerant Work flow Scheduling algorithm for providing fault tolerance by using replication

and resubmission of tasked based on based on the priority of the task. This model is based on the fact that

workflow is a set of tasks processed in some order based on data and control dependency. Scheduling the

workflow along with the task failure consideration in a cloud environment is very challenging. FTWS schedule

and replicates the tasks to meet the deadline.

3.5. Candy

Candy is a component based availability model. It is based on the high availability assurance of cloud service
is one of the main characteristic of cloud service and also one of the main critical and challenging issue for
cloud.

3.6. FT-Cloud

A component ranking based framework and its architecture for building cloud application. FT Cloud occupies

the component invocation structure and frequency for identifying the component. Also, there is an algorithm to

automatically govern fault tolerance safely.

4. Fault tolerant strategies

There are many strategies in which three are exclusively included here.

A. Recovery Blocks (RB)

RB [3] is a means of structuring redundant program modules, where standby components will be invoked

sequentially.

Failure probability f of a recovery block can be calculated by:

f = πn
i=1 f i (1)

Where n is the number of redundant components and fi is the failure probability of the ith component.

B. N- Version Programming (NVP)

NVP [11] is multi-version programming where versions are independently generated. Failure probability f of a

recovery block can be calculated by:

f = ∑
n
i=n+1/2 F(i) (2)

Where n is the number of functionally equivalent components (n is odd) and F(i) is the probability that I alternative

components from all the n components fail.

Int. J. of Intelligent Computing and Applied Sciences
4

 Copyright©2013 DRIEMS ISSN (Print) : 2322-0031 , Vol. 4, Issue 2, 2016

4.1. Parallel Strategy

Invokes all the n functional equivalent components in parallel and the first returned response will be
employed as the final result. Failure probability f of a recovery block can be calculated by:

f = π
n

i=1 f
i

(3)
Where n is the number of redundant components and fi is the failure probability of the ith component.

4.2. ACO

Ant colony optimization algorithm (ACO) is a probabilistic technique and is a member of the ant colony

algorithms family, in swarm intelligence methods, and it constitutes some metaheuristic optimizations. It can be

reduced to finding good paths through graphs.

In general, the ant moves from state to state with probability Where is the amount of pheromone deposited for

transition, 0 ≤ α is a parameter to control the influence of ,is the desirability of state transition xy (a priori

knowledge, typically , where d is the distance) , and represent the attractiveness and trail level for the other

possible state transitions.

4.3. BC Strategy

The Artificial Bee Colony (ABC) [11] is an optimization algorithm based on the intelligent foraging

behaviour of honey bee swarm. The main steps of the algorithm are given below:

1) Initial Food:

Initial food sources are produced for all employed bees.

2) Repeat:

14. Each employed bee goes to a food source and then evaluates its nectar amount and dances in the hive.

15.Each onlooker watches the dance of employed bees and chooses one of their sources depending on the

dances, and then goes to that source.

5. Challenges for Implementation of Fault

Providing fault tolerance [1] requires careful consideration and analysis because of their complexity, inter-

dependability and the following reasons:

1. There is a need to implement autonomic fault tolerance technique for multiple instances of an application

running on several virtual machines [5].

2. The new approach needs to be developed that integrate these fault tolerance techniques with existing

workflow scheduling algorithms [6].

3. Different technologies from competing vendors of cloud infrastructure need to be integrated for

establishing a reliable system [7].

4. Autonomic fault tolerance must react to synchronization among various clouds [7].

5. A benchmark based method can be developed in cloud environment for evaluating the performances of

fault tolerance component in comparison with similar ones [8].

6. To ensure high reliability and availability multiple clouds computing providers with independent software

stacks should be used [9] [10].

6. Related work

The landmark paper on fault-tolerant matrix operation was published in 1984 by Huang and Abraham [13], in

which an Algorithm-Based Fault Tolerance (ABFT) method was proposed. ABFT uses matrix or vector level

checksum in row and column to detect a faulty processor in multiple processor systems. The method can be used

to detect and correct errors in matrix operations such as addition, multiplication, scalar product, and LU-

decomposition performed in multiple processor systems which may have one failed processor. In our work,

however, we focus on the problem of achieving a certain reliability with the minimum cost in potentially faulty

clouds. In [14], Mei et al. investigated the problems of dynamic computing service registration, large data

storage and access, adaptability, and quality discovery in cloud computing. A comprehensive [15] high-level

approach to shading the implementation details of the fault tolerance techniques to application developers and

Int. J. of Intelligent Computing and Applied Sciences
5

 Copyright©2013 DRIEMS ISSN (Print) : 2322-0031 , Vol. 4, Issue 2, 2016

users by means of a dedicated service layer has been proposed. In particular, the service layer allows the user to

specify and apply the desired level of fault tolerance, and does not require knowledge about the fault tolerance

techniques that are available in the envisioned Cloud and their implementations. The proposed algorithm in [16]

works for reactive fault tolerance among the servers and reallocating the faulty servers task to the new server

which has minimum load at the instant of the fault.

7. Proposed work

Executing sophisticated applications like video, image and storage processing in personal mobile devices

remains challenging due to their limited resources (e.g. computation, memory, energy etc.). As a result many

applications rely on offloading all or part of their works to remote servers such as clouds and mobile devices. In

a dynamic network, e.g. mobile cloud for disaster response or military operations, when selecting remote servers

they are often inaccessible because of node failures, unstable links or node mobility which raises reliability

issue. The natures of these operating environments are such that faults often develop during the course of

regular action. A fault can cause the node to lose functionality, which in turn may lead to drop the overall

performance of the system.

In our proposed work, we evaluate the system performance based on the following terms:

A. Efficiency

Ability of the system to best utilize the available resources.

B. Robustness

Ability of the system to identify and recover from faults, Formally the problem can be defined as follows:

Given: A set of mobile nodes in cloud environment R = {R1, R2, R3... Rn }.

A pre-defined set of tasks to be executed by the mobile nodes T = {T1, T2, T3, ..., Tm}, where each task Tj is

executed by a separate mobile node Ri.
We assume that the task assignment is pre-defined by means of a vector < Ri, T j >. An individual task Tj is

executed by the specific mobile node Ri. Faults can occur naturally during task execution or can be artificially

introduced into the system. Faults are broadly categorized into three types: known, which are faults the designer

can anticipate based on experience, application type and operating environment unknown, which are faults not

anticipated by the designer, but which can be diagnosed by the system based on experience and sparse

information available during execution and undiagnosable, which are faults that cannot be classified

autonomously and need specific techniques to handle. The number of faults in each category is represented as

fknown, fun known, and fun diagnosable. The mobile nodes have three functionally significant operating states:

Normal state, in which a mobile node focuses all its system resources and operating time towards completing

the assigned task. Fault state, in which a mobile node spends all available time and resources in attempting to

identify the source of the encountered fault and Recovery state, in which a mobile node spends its resources and

operating time in executing the recovery action for the diagnosed fault. Once assigned to a mobile node, a task

can have two possible outcomes: task success or task failure. Task success is defined as the ability of the robot

to successfully complete its assigned task in the presence of faults. A task failure is defined as the inability of

the mobile node to complete its assigned task in the presence of faults. If a mobile node (Ri) fails to complete a

task (Tj) , then based on the system design, the system can either assign task T j to a different mobile node Ri, re-

assign Tj to the task queue of Rj , remove task Tj from the system task list. Every task assignment <Ri,Tj>, is

considered a task attempt and is evaluated separately towards overall system performance. Based on the

importance of the task the designer builds a task-utility table, such as that shown in Table I, in which the

summation of the terms (∑u and ∑c) are normalized between ranges of [0, 1].

8. Measuring System Performance

We first define the total number of faults for the ith attempt of task Tj as the summation [18] of all

encountered faults during the course of task execution. That is, Fi
j = fi known j+ fi unknown j+ fi undiagnosable

j. Successful completion of task Tj is measured by means of a success metric, Aj. An award is associated with

every successfully completed task, given by the utility component uj.

Aj = uj (1)

Then, the system level measure of success (A) is calculated as:

Int. J. of Intelligent Computing and Applied Sciences
6

 Copyright©2013 DRIEMS ISSN (Print) : 2322-0031 , Vol. 4, Issue 2, 2016

A = ∑uj (2)

J:Tj€X

Where X = {Tj | Task Tj € T was successfully completed}, Similarly, we associate a task failure metric, B i j

,for each unsuccessful attempt of task Tj by a mobile node. The punishment associated with a failed task attempt

is given by the cost component for task failure cjOn the other hand, as the performance is closely tied with the

mobile node’s ability to recover from faults, every failed task has a robustness component associated with it.

The effect of the task failure metric towards performance is discounted by the extent of the robustness in the

task, i.e., the higher the robustness, the lower is the value of the task failure. We define ρi
j as the measure of

robustness for the ith attempt of task Tj and is given by ρi
j = (f i known j+ f i unknown j) / Fj

i (3)

Based on “(3)”, the task failure metric for the ith attempt of task Tj is:

B ij = cj * (1 – ρi
j) (4)

Grouping all failed attempts of a task T j , we get task failure metric Bj for a task T j.

qj

Bj = (c j* q j) * ∑ (1 – ρi j) (5)

i=1

where qj is total number of failed attempts of task Tj. The upper bound of q is application specific and needs to

be determined by the designer before implementation.

Simplifying,

qj

Bj = (c j* q j) * (qj-∑ ρi j) (6) i=1

Extending equation “(3)” across all task failures,

gives:

 qj

B = ∑(cj * qj) * (qj-∑ ρi j) (7)

J:Tj€X i=1

A high value of ρ s indicates a highly robust system and a ρ s value 0 indicates a system with no robustness to

faults. In order to define the system efficiency metric (e), we need to measure the total time (t j) spent by a

mobile node on a successfully completed task, Tj . This is given by the summation of time spent in Normal

(tNormal), Fault (tFault) and Recovery (tRecovery) states for that attempt,

i.e.,

t j = tNormal j + t Fault j + t Recovery j (2)

Then, we can define e as:

Int. J. of Intelligent Computing and Applied Sciences
7

 Copyright©2013 DRIEMS ISSN (Print) : 2322-0031 , Vol. 4, Issue 2, 2016

e = ∑ (t Normal j) /t j (3)

j:Tj€X

Similar to the robustness measure, a more efficient system has a higher value of e and an inefficient system
has e near 0. The influence of learning towards system performance can be measured as an empirical

quantity.

Table I

Utility-Cost Table

Task Utility Cost For Task Failure

t1 u1 c 1

t2 u 2 c2

t3 u3 c3

.......................

t10 u10 c10

Consider a sample multi-node application comprised of 10 individual tasks to be completed by a team of

10 functionally similar mobile applications. We make the assumptions that the robots encounters one failure

per task and the task/utility weights are evenly distributed. Then we define these measures as follows:

For all i, u i = c i
10 10

∑ui=1i ∑i=1c i = 1 (4)

Where Y= {Tj | Task Tj € T failed}.

Now the measure of performance can be obtained by subtracting the cost associated with a task failure from

the utility for successful task completion.

P = A – B (8)

P provides the designer with a measure of the system’s effective performance whose value will be in the
range of [-∞,1].If P=1, then the system performs optimally and if P approaches -∞ then it indicates a total

system failure.

9. Measuring fault-tolerance

By combining individual task robustness measures, system robustness can be represented as

qj

ρs = ∑ ∑ ρj
i (1)

J:Tj€Y i=1

The time spent by a mobile node in normal operation mode is assumed to be t secs. Also, as it takes a very

small fraction of time to diagnose task failure from the time a fault is discovered, we assume this time to be

negligible and ignore it.

The variations in the values can be evaluated by considering the following three cases:

[1] Best cases, where the system encounters no failures.

[2] Average case, where the system encounters at least one failure in half the number of executed task.

[3] Worst-case, where there is at least one failure in all cases.

The Table I illustrate the values obtained for two different architectural implementation-one with no built-in

fault tolerance (F1) and another with some redundancy-based fault-tolerance (F2).

When a fault is encountered during task execution in the first architecture, mobile nodes do not have the

capability to recover and report a failed task. In case of the second architecture, if and when a failure occurs, the

task is assumed to have failed and is reassigned to another team member for execution.

Int. J. of Intelligent Computing and Applied Sciences
8

 Copyright©2013 DRIEMS ISSN (Print) : 2322-0031 , Vol. 4, Issue 2, 2016

10. Result Analysis

Firstly the performance of the system is measured in a system with faults. We inferred that on average, the

performance of the system with zero fault-tolerance (F1) is better than that of the system with some fault-

tolerance (F2) which is represented in Table II. However, with increasing number of faults in the system

increases, F2 edges F1 in terms of performance. On the other hand, a system with a higher task completion rate

will have a higher value for efficiency, which is reflected in Table II.

Table II: Evaluation Table

Secondly, robustness of the system is optimized using Genetic algorithm which is reflected in Fig1.

Fig 1

System Case P ρ e

F1 Best case 1 0 10

 Average case 0.5 0 5

 Worst Case -1 0 0

F2 Best case 1 0 10

 Average case 0.4 0 7.5

 Worst Case -4.5 0 5

 Best: -0.23248 Mean: -0.2323

 0.1

 Best fitness

v
al

u
e

0 Mean fitness

-0.1

F
it

n
es

s

-0.2

 -0.30 10 20 30 40 50 60 70 80 90 100

 Generation

 Current Best Individual

be
st

in
di

vi
du

al

0

-10

C
u

rr
en

t

-20

-30

1

 Robustness

Int. J. of Intelligent Computing and Applied Sciences
9

 Copyright©2013 DRIEMS ISSN (Print) : 2322-0031 , Vol. 4, Issue 2, 2016

11. Conclusion and Future Work

Fault tolerance is concerned with all the techniques which are necessary to enable a system to tolerate system

faults remaining in the system after its development. This paper discussed the fault tolerance techniques

covering its research challenges, used for implementing fault tolerance techniques in cloud computing. In this

paper, we present an evaluation metric to measure the extent of fault-tolerance towards system improvement

over a period of time .Specifically this research provides a qualitative measure for identifying system fault-

tolerance in terms of efficiency, robustness. However we have not considered some parameters like availability,

reliability and extent of fault management in dynamic environment for measuring the system performance

which we will evaluate in our future research work.

References

[1] Anju Bala, Inderveer Chana,” Fault Tolerance- Challenges, Techniques and Implementation in Cloud

Computing” IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012.

[2] Alain Tchana, Laurent Broto, Daniel Hagimont, ”Fault Tolerant Approaches in Cloud Computing

Infrastructures ,ICAS 2012 : The Eighth International Conference on Autonomic and Autonomous Systems.

[3] Virendra Singh Kushwahi, Sandip Kumar, Priyush Narwariya, “A Survey on various Fault Tolerant

Approaches for cloud Environment during Load Balancing, International Journal of Computer Networking.

[4] Ravi Jhawar and Vincenzo Piuri, “Fault Tolerance and Resilience in Cloud Computing Environments”, in

Computer and Information Seurity handbook, 2nd Edition.

[5] Gang Chen, Hai Jin, Deqing Zou, Bing Bing Zhou,Weizhong Qiang, Gang Hu, “SHelp: Automatic

Selfhealing for Multiple Application Instances in a Virtual Machine Environment”, IEEE International

Conference on Cluster Computing, 2010.

[6] Yang Zhang1, Anirban Mandal2, Charles Koelbel1 and Keith Cooper, “Combined Fault Tolerance and

Scheduling Techniques for Workflow Applications on Computational Grids” in 9th IEEE/ACM

international symposium on clustering and grid, 2010.

[7] Imad M. Abbadi, “Self-Managed Services Conceptual Model in Trustworthy Clouds' Infrastructure”, 2010.

[8] S. Hwang, C. Kesselman, “Grid Workflow: A Flexible Failure Handling Framework for the Grid”,12th

IEEE International Symposium on High Performance Distributed Computing (HPDC’03), Seattle,

Washington,USA. IEEE CS Press, Los Alamitos, CA, USA, June 22 - 24, 2003.

[9] Michael Armbrust, Armando Fox, Rean Griffith, “Above the Clouds: A Berkeley View of Cloud

Computing”, Electrical Engineering and Computer Sciences University of California at Berkeley, 2009.

[10] Wenbing Zhao, P. M. Melliar-Smith and L. E. Moser, “Fault Tolerance Middleware for Cloud

Computing”, 2010 IEEE 3rd International Conference on Cloud Computing.

[11] http://haproxy.1wt.eu/download/1.3/doc/configuration.txt.

[12] Seyyed Mansur Hosseini and Mostafa Ghobaei Arani, “Fault Tolerance Techniques in Cloud Storage: A

Survey”, International Journal of Database Theory and Application Vol.8, No.4 (2015), pp.183-190.

[13] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for matrix operations,” IEEE

Transactions on Computer, vol. 33, no. 6, pp. 518–528, 1984.

[14] L. Mei, W. Chan, and T. Tse, “A tale of clouds: Paradigm comparisons and some thoughts on research

issues,” Asia- Pacific Conference on Services Computing. 2006 IEEE, vol. 0, pp. 464– 469, 2008.

[15] R. Jhawar , Univ. degli Studi di Milano, Crema, Italy , V. Piuri ,M. Santambrogio, “Fault Tolerance

Management in Cloud Computing: A System-Level Perspective”, IEEE System Journal, Volume 7

Issue 2,2013.

[16] Jasbir Kaur, Supriya Kinger , “Efficient Algorithm for Fault Tolerance in Cloud Computing”,

International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6278-6281.

[17] T.K. Singh, G.T. RaviTeja, P.S.Pappala,” Fault Tolerance-Challenges, Techniques and Implementation in

Cloud Computing” International Journal of Scientific and Research Publications, Volume 3, Issue 6, June

2013.

[18] Balajee Kannan and Lynne E. Parker,” Fault-Tolerance Based Metrics for Evaluating System

Performance in Multi-Robot Teams”, Proc. of Performance Metrics for Intelligent Systems Workshop,

2006.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20Jhawar.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.V.%20Piuri.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.M.%20Santambrogio.QT.&newsearch=true

Int. J. of Intelligent Computing and Applied Sciences
10

 Copyright©2013 DRIEMS ISSN (Print) : 2322-0031 , Vol. 4, Issue 2, 2016

[19] Sweta Patel, Ajaya Kumar Singh,” Fault Tolerance Mechanisms and its Implementation in Cloud

Computing –A Review”,IJARCSSE, Volume 3, Issue 12,December 2013.

[20] Sonal Rana ,Aditi Sharma,Amandeep Kaur,” Fault Tolerance in Cloud Computing by Efficient Load

Balancing Mechanism Based on Ant Colony”, IJARCSSE,Volume 5, Issue 1,January 2015 .

[21] Vikas Kumar, Shiva Prakash,” A Load Balancing Based Cloud Computing Techniques and Challenges”,

IJSRM, Volume,Issue 5, May 2014

[22] K.Ganga,,Dr S.Karthik,, A.Christopher Paul, “A Survey on Fault Tolerance in Work flow Management

and Scheduling “,IJARCET, Volume 1, Issue 8, October 2012

Biographical Notes

Dr. Chandralekha is an Associate Professor, Department of Computer Science & Engineering,

DRIEMS, Cuttack. She did her Ph.D from Utkal University,Odisha in 2014. She has more than

10 years of teaching & industrial experience. She has significant number of publications in both

National and International repute Journals and Conferences. She is guiding many M.Tech and

Ph.D students.

